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ABSTRACT 

A simple inexpensive method of analyzing and/or determining signal 
parameters of unknown purpose or origin, including signals in the pres- 
ence of noise, is described.  The method is an adaption of intensity 
modulation techniques used in radar systems and employs readily available 
laboratory equipment.  It also employs a moving film camera but techniques 
for obtaining quasi-instantaneous outputs are described.  Other possible 
uses, such as phase detection, frequency comparison and telemetry evalua- 
tion are also described. 

1. INTRODUCTION 

The detection, demodulation and analysis of unknown signal parameters 
are usually expensive and laborious tasks.  Ulis is especially true of 
weak signals in the presence of noise. 

This report describes a Method of correlating these types of signals 
as a function of time.  The method utilizes intensity modulation tech- 
niques and readily available laboratory equipment.  It provides the user 
with a valuable analytical tool in evaluating signal parameters as well 
as design parameters for the more elaborate systems. 

The feasibility of this technique has been demonstrated in the lab- 
oratory.  Its use has effected a substantial saving of time and funds in 
evaluating telemetry signals.  It has also been used, with considerable 
success, in analyzing other types of signals.  The techniques of the sys- 
tem will suggest its use in many other applications where a time measure- 
ment Is Involved.  Some of these applications are described. 

It is recognized that intensity modulation techniques are being used 
in radar systems and perhaps in other specialized cases.  However, a 
search of the literature and discussions with personnel from DOFL and 
other Department of Defense agencies (ref 1) failed to yield evidence of 
this technique being used in the manner described in this report. 

The idea, for this technique, evolved while investigating ionospheric 
disturbances, utilizing back-scatter radar techniques, in a project spon- 
sored by ARGMA (OAMC).   The work covering this report was funded by DOFL, 
ARGMA and OTIA. 

2. INTENSITY MODULATION 

Intensity modulation, as described in this report, is the modulation 
of intensity of an o,oclllos«.op& sweep rather than the modulation of incan- 
descent, or other, lamps.  The intensity of an oscilloscope sweep can be 
increased or decreased by applying a negative or positive bias to the 
cathode of the cati.ode-ray tube.  It can also be accomplished by applying 
opposite polarities to thss control grid of the CRT (a television brightness 
control operate.s in this manner).  If negative signals are applied to the 



cathode during a sweep, then the Intensity of the sweep increases for 
each of the negative inputs and the tine duration of the increase is 
equal to the time duration of each of the signals. 

A radar PPI scope display is a typical example of intensity mod- 
ulation. The oscilloscope sweep trace begins at the center of the 
tube, and sweeps outward.  The sweep is Initiated (synchronized) by 
the transmitted pulse; its speed and duration is determined by the 
range of the radar.  Radar echoes are displayed as intensified spots 
along the range sweep, their position on the sweep being determined 
by the range of the echo (delay time between transmitted pulse and 
received signal).  PPI scopes are also used to obtain azimuth infor- 
mation. 

A second scope, A-scope, is used to determine a more precise 
range of the radar echo and displays these echoes as an amplitude 
function.  If the detection sensitivity is Increased, noise signals 
may be confused with target echoes and the latter become difficult 
to Identify.  Figure la is a graphical example of a radar A-scope 
display (with its polarity reversed) that Is saturated with noise. 
It Is apparent that it is virtually impossible to differentiate be- 
tween noise and targets.  It should be remembered that the A-scope 
display would be repeated at a rate equal to the repetition rate of 
the radar. 
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Figure  la.     A typical  noise   saturated   radar  A-scope  display. 

RANGE 

Figure   lb.      Intensity  modulation   of  the   radar A-scope  above. 

If  the  radar  A-scope  is   intensity   modulated,   as  shown  in  figure   lb, 
and  photographed with a  continuously moving   film  camera,   it  then   becomes 



possible to detect targets   In the presence of noise.     Noise signals 
occur randomly while targets have a  range  (time)   relationship.     A 
graphical example is  shown  in figure 2. 

Figure 2.     Graphical  example  of a moving film  photograph of an 
intensity modulated  radar A-scope. 

The   first  intensified spot   on each of   the  horizontal  sweeps   represents 
the   transmitted  pulse.     This   is   followed  by a  series of  spots  represent- 
ing noise and  target   signals.     The  repetitive  sweeps normally occur 
superimposed upon one another but  can   be  displayed, as   shown,   if   the 
film moves  in  a  perpendicular direction,     TTie   target  is  readily   identi- 
fied  in  this  example. 

If we consider  a  radar   receiver that   is   remotely   located from the 
transmitter and  has  an  output  similar  to that   shown in   figure  la,   cor- 
relation  would  be  an  impossibility without a  synchronizing  pulse  from 
the  transmitter.     However,   if  the  sweep circuits   are synchronized  to  an 
external   time  standard,   it   becomes  possible  to correlate radar echoes   to 
a real  time  base.     A block  diagram of   the  instrumentation capable of  this 



type of detection Is shown in figure 3.  An oscilloscope sweep is 
synchronized to an external time standard.  Incoming signals are applied 
to the cathode of the CRT, which displays these signals as intensified 
spots along the sweep axis.  Signals having a time relationship are con- 
sidered correlated. 

SIGKAL 
INPUT 

CLIPPER 
AND 

AMPLIFIER 

CATHODE RAY TUBE 

EXTERNAL 
TIME 

STANDARD SYNC 
PULSE 

CAMERA 

SWEEP 

CIRCUITS 

Figure 3.  Block diagram of instrumentation used as a correlator. 

Examples of moving film photographs are shown in figures 4a and 
4b. The  sweep axis is vertical in both figures while film movement is 
horizontal.  These film records are part of a back-scatter radar exper- 
iment in which ionospheric disturbances were being studied (ref 2).  The 
pulse energy was transmitted obliquely to the ionosphere.  Upon reaching 
the ionosphere, it was reflected to the ground at an angle equal to the 
angle of incidence.  The energy at the ground level was scattered in all 
directions, and some was reflected back along the path from whence it 
came.  In many instances it was possible to observe multiple reflections. 

In figure 4a, the range scope was located near, and synchronized by, 
the transmitter.  The transmitted pulse is the first horizontal trace. 
Note the sharpness of this trace.  The ground reflection is the second 
horizontal trace.  Note the width of this reflection, which indicate a 
ground reflection from over an area approximately 100 mi long.  A second 
ground return is also visible. 



Figure 4a.     A  back-scatter  radar record  synchronized by  the  transmitter. 
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Figure   4b.      A back-scatter  radar  record  synchronized by  an  independent 
source. 



In Figure 4b; the range scope and associated detection equipment 
were located approximately 50 ml from the transmitter site.  At this 
location it was Impossible to synchronize to the transmitted pulse, 
therefore, an external time standard, whose frequency output was 
equal to the pulse repetition rate of the radar, was used to synchro- 
nize the range scope.  Note the similarity of the ground return sig- 
nals In these figures even though the equipment sensitivity and film 
speed differed. 

This type of radar synchronization suggests the possibility of 
establishing a nationwide radar system similar to the National Bureau 
of Standards' WWV.  The system could be composed Of existing high- 
power radars and would enable any research establishment to utilize 
the facilities without resorting to the expense of purchasing trans- 
mitters . 

A typical example is in the field of ionospheric studies.  Each 
study group maintains its own transmitters, the cost of which may re- 
quire a major portion of the funds available.  A few well located 
transmitters, at the proper frequency, could serve as a source of 
energy for every research group Interested in this field.  In addition 
to effecting a substantial saving of funds, the amount of interfer- 
ence in the electromagnetic spectrum would Le decreased.  Geometry 
considerations of radar target locators, using passive receivers, are 
described in reference 3. 

3.   ANALYSIS OF UNKNOWN SIGNAL PARAMETERS 

It has been demonstrated that it is possible to observe a radar 
transmitter, even though it is located remotely, and to correlate 
its radar echoes to an external time base.  This system can be ex- 
panded for use in correlating any type of signal, as a function of 
time. 

Its application to a hypothetical signal input and the determina- 
tion of the signal parameters can be demonstrated as follows:  Assume 
that a signal Input of unknown origin is applied to the oscilloscope. 
The sweep circuits, including the time standard, are manipulated until 
the intensified spots on the sweep trace appear to be stationary.  The 
camera is then turned on for a few minutes.  A resulting film is shown 
graphically in figure 5. 

The solid horizontal lines represent time (centimeter) markers 
while the vertical (oblique pattern) dashes represent each negative 
input cycle. For the purpose of analyzing this figure, we assume the 
following: Each sweep, shown vertically, traversed the lO-cm width 
of the oscilloscope at a speed of 1 msec/cm. The external time stand- 
ard triggered the sweep at a rate of 100 cps and the film speed was 
10 in./sec.  If these signals are observed visually, they are seen to 
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Film Travel 

Figure 5.  A graphical presentation of an intensity modulated signal, 

drift slowly to the left of the oscilloscope (down on the film), in- 
dicating that they are not exact multiples of the frequency standard. 
Our first observation is to note the number of cycles occurring in a 
sweep.  In this case, there are approximately 6 cycles/sweep or a 
frequency of approximately 600 cps (6 times the frequency standard). 
If this frequency were exactly 600 cps, it would appear as a horizon- 
tal line and since it appears to advance in time, it must be greater. 
The oblique pattern represents a record of the rate of drift and this 
rate can be related to a frequency by counting the total number of 
cycles in a given period of time and dividing by this time as follows: 

The frequency is equal to the number of cycles per sweep, times 
the total number of sweeps per inch of film travel divided by the time 
rate; time rate equals the time per inch of film travel minus the time 
advance of a cycle per inch of film travel. 

f = 
of cycles/sweep x no. of sweeps/in. 

time/in. t ime advance/i n. 

In this case, there were 6 cycles/sweep, 
vance of 4 ms/in. of film travel: 

10 sweeps/in. and a time ad- 

f = 
6 x 10 

0.1 0 .004 
= 625 cps. 

1 1 



It would be simpler to determine the period of one cycle or the 
number of cycles in one sweep but the film speed is normally in the order 
of a few inches per minute and the individual sweeps are not discernible. 
Furthermore, since the negative input cycles are clipped, it would be dif- 
ficult to determine the exact timing of the individual cycles. 

Another method of determining the frequency is to count the number 
of times an oblique trace crosses a particular centimeter marker for 1 in. 
of film travel.  This figure is added to the total number of cycles occur- 
ring in 1 in. of film travel (MO. of cycles/sweep x no. of sweeps/In.). 
This sum is then divided by the time required for 1 in. of film travel and 
the resultant is the total number of cycles in a known period of time. 
For example, there are 6 cycles/sweep, 10 sweeps/in., 0.1 in,/sec and 8 
cross-overs in 3 inches of film travel (2.6/in.) or: 

f = 
2.6 + (6 x 10) 

0.1 
= 626 cps. 

Thus the two methods give frequencies differing by only 1 cps. 
There are other methods of determining frequencies and/or parameters and 
the choice would be determined by requirements of the user. 

4. OTHER POSSIBLE APPLICATIONS 

The technique, described thus far, can be used to study any signal 
phenomenon from which a time comparison must be made.  The accuracy of 
the system is limited to the accuracy of the external time standard. 
Crystal oscillators, with a stability of better than 10" , can be ob- 
tained commercially and used for this purpose. 

An application of this technique is in phase shift detection where 
the phase of the incoming signal is compared with the external time 
standard.  A photograph of a phase shift of a 100-cps signal is shown in 
figure o.  The output of the external time standard was also 100 cps and 
it initiated the beginning of each sweep.  The sweep speed was 100 p.sec/cm 
or 1/10 of the period of the incoming signal.  The centimeter markers 
are therefore calibrated in degrees, 3.6 /cm.  The time markers at the 
lower edge of the photograph indicate 1-min intervals.  The signal trace 
moves upwards by approximately 3/4 cm or 2.7c,/min.  Since the film moves 
to the left, the phase of the signal is delayed by 0.045o/sec with re- 
spect to the standard. 

Figure / is another example of this phase measurement.  In this ex- 
ample the displayed frequency was 100 cps, the sweep speed was 10 jj,sec/cm 
or 0.36o/cm and the synchronizing standard was 10 cps.  The incoming sig- 
nal was sampled every tenth cycle.  The camera speed was also increased 
in order to display the individual sweeps.  The phase shift was in the 
same order as that of figure 6. 

The two foregoing examples demonstrate the feasibility of this type 
of measurement . It should be noted that short and long time measurements 

f7* 
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Figure 6.  Phase shift display (slow camera speed). 

1146-61 
Figure   7.     Phase   shift  display   (fast  camera  speed) 



can be made using this method.  Phase accuracies within less than 
0.001o/sec can be obtained over long periods of time and lesser 
accuracies in very short periods of time; i.e., assume that the 20 
individual sweeps are the maximum number that are discernible for 
each inch of film travel at a maximum film speed of 1000 in./min, 
the sweeps would then occur at 60-^isec intervals.  This Is the min- 
imum time in which a phase measurement can be made.  The maximum 
time Is of course practically unlimited. 

The maximum frequencies of which a phase shift can be measured 
depend upon frequency response of the amplifier, clipping amplitude, 
sweep speed, and persistence of the phosphor of the oscilloscope. 
It is possible, however, to use frequency dividers to lower the fre- 
quencies.  The choice of methods would depend upon the- requirements 
of the user. 

Another application of this method is the time comparison of 
multiple signals.  For example, the outputs of a number of receivers 
could be compared simultaneously, i.e., interferometer systems. 

This method can be used to provide a histogram of transmission of 
a frequency spectrum versus time.  In this application the sweep cir- 
cuits would be synchronized to the drive mechanism of a frequency 
scan receiver.  The sweep would then be calibrated in frequency.  A 
receiver output would be displayed on the sweep as a transmission. 

The resulting film would be a recording of the frequency of trans- 
mission, as well as the time and duration of these transmissions.  A 
graphical example of an expected recording of this type is shown in 
figure,8.  Each of the horizontal traces represents a frequency trans- 
mission and the time of transmission.  Note the dashed trace; this 
would represent a radio beacon transmitting periodically. The  broad 
traces may be indicative of wide-band transmissions or multiple stations. 

A similar type of system exists in the military AN/APA-23 recording 
assembly.  This assembly is a specialized adaptor and uses a paper pen 
recorder.  The details of this assembly were not available at the time 
of this writing.  The intensity modulation technique is described because 
it does not require specialized equipment. 

In analyzing tape recorded signals using this technique, it was dis- 
covered that the tape recorder speed varied.  The speed variations were 
very small, but significant.  This suggested the use of this technique 
in determining the exact speed variation and the following experiment 
was conducted: 

A 100-cps output, from the frequency standard, was recorded at 15 
in./sec.  The tape was played back and compared with the standard.  If 
there «ere no variations in tape speed, the output frequency would be 
exactly 100 cps and the resultant film would have horizontal traces, the 
number of which would depend on the sweep speed. 

14 
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1147-61 
Figure  9.     Tape   recorder  speed variation versus time. 



Figure 9 is a photograph of this experiment.  Hie sweep speed was 
5 msec/cm (the period of one cycle is 10 msec or 100 cps) and the camera 
speed was 2.5 in./min.  Each cycle advances in time by 50 msec in 1/3 min 
or 150 msec/min.  Since there are 6000 cycles in a 60-sec period for 100 
cps and in this case, 6000 cycles occurred in 60 sec minus 150 msec, the 
frequency is 

6000 
f B 60 - 0.15 = 100.25c.PS 

This indicates the tape speed is slow by 0.25 percent. 

Another method of calculating the tape speed:  Each cycle advances 
in time, indicating a higher frequency.  A higher, frequency would mean 
more cycles per inch of tape or a slower tape speed.  The time advance of 
each cycle is 0.15 sec/min, indicating the tape speed of 900 in. in 1 
min +0.15 sec, which is also 0.25 percent. 

Another use of the system described here is in telemetry applications. 
A telemetry signal, directly out of the receiver, can be recorded and the 
resulting output is in analogue form.  This is especially true of pulse 
time-sharing types of modulation.  The system can be classed as a demodu- 
lator, and can become a valuable tool in analyzing this type of data.  The 
channels can be analyzed individually in the following manner:  Assume 
there are 6 channels and the repetition rate 60 cps.  (Each channel con- 
sumes a time period of approximately 2.7 msec and repeats 60 cps).  The 
external time standard output is set at 60 cps and is applied to a delay- 
ing circuit.  The delayed output is then applied äs a synchronizing pulse 
for the sweep.  The sweep speed is adjusted to approximate the time con- 
sumed by one channel.  The time delay of the synchronizing pulse can now 
be adjusted to select any channel desired. 

It  has been demonstrated, in the laboratory, that this technique 
can effect a substantial saving in time in analyzing signals of this type 
compared with the more elaborate methods.  This statement is not intended 
to imply that this technique is better than the more elaborate methods, 
but that it can be used more economically in many Instances and further, 
it can be used to determine design parameters for the more elaborate 
methods. 

5.   MODIFICATIONS FOR RAPID OBSERVATION 

It is recognized that film development can become cumbersome and 
time consuming and for many applications, it would be desirable to make 
immediate observations.  For this reason, a Polaroid scope camera was 
used to replace the moving film camera.  To obtain the required scanning 
action, formerly obtained by film movement, a condenser discharge was 
applied to the horizontal plates of the CRO (normally these plates are 
inactive).  A condenser discharge is an exponential function and in order 
to resolve time, the voltage applied to the horizontal plates must be a 
linear function.  However, the feasibility of this scheme can be demon- 
strated with the condenser discharge. 

16 



Two examples of Polaroid photographs of the radar experiment, 
described earlier, are shown in figure 10.  The sweeps in both figures 
are horizontal while scanning action is vertical.  Tlie transmitted 
pulses are the left vertical traces. Note the interference pattern 
in both photographs, 

An example of the use of this technique as a correlator is shown 
in figure 11.  A high-frequency receiver was tuned to a signal that 
was barely discernible above the noise.  A high-speed keying sound was 
heard in the background and attempts to synchronize on this signal were 
unsuccessful.  Figure 11a is a photograph of this attempt and it is 
obvious that the signals appear randomly. 

Minutes later, the oscilloscope was synchronized with an external 
time standard and it became apparent, visually, that a repetitive sig- 
nal was present.  Figure lib is a photograph of this signal.  The basic 
parameter of this signal, the repetition rate, can easily be determined 
by noting the time required for the vertical traces to repeat themselves. 
Figure lie is the same signal with a higher sweep speed and scanning 
rate. 

This experiment was conducted within a 10 mln period and the re- 
sults are conclusive. 

Other experiments were conducted in which a television-type scan 
was used.   The scan was accomplished by manually turning the vertical 
position control of the oscilloscope and making visual observations. 
The success of this experiment suggests the possible use of this method 
for pattern recognition.  The operator should be able to adjust the 
sweep and scan rates to obtain a desired pattern. 

6.   CONCLUSIONS 

It has been demonstrated that intensity modulation techniques can 
provide a valuable tool in analyzing various signal parameters.  In 
many instances, the use of this technique can offer a substantial saving 
of time. 

The system described used readily available laboratory equipment 
although modifications would be advisable for some applications.  These 
modifications would suggest themselves to the user. 

Polaroid cameras and television-type scanning can be used for a 
quick look in detection and/or pattern recognition. 

This technique is being investigated to determine the feasibility 
of its use in doppler detection, coherent detection, and the detection 
signals in the presence of jamming. 
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Figure   10.     Polaroid  camera  pictures  of   a   radar   transmission. 



Figure   11a.     Polaroid  photograph.     Sweep synchronized with 
input  signal. 

Figure   lib.     Polaroid  photograph.     Sweep synchronized 
independently. 
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Figure   lie.     Same  as   above with  an increased sweep  speed. 
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